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ABSTRACT: In 2009, advancements in NWP and computing power inspired a vision to advance hazardous weather
warnings from a warn-on-detection to a warn-on-forecast paradigm. This vision would require not only the prediction of in-
dividual thunderstorms and their attributes but the likelihood of their occurrence in time and space. During the last decade,
the warn-on-forecast research team at the NOAA National Severe Storms Laboratory met this challenge through the re-
search and development of 1) an ensemble of high-resolution convection-allowing models; 2) ensemble- and variational-
based assimilation of weather radar, satellite, and conventional observations; and 3) unique postprocessing and verification
techniques, culminating in the experimental Warn-on-Forecast System (WoFS). Since 2017, we have directly engaged users
in the testing, evaluation, and visualization of this system to ensure that WoFS guidance is usable and useful to operational
forecasters at NOAA national centers and local offices responsible for forecasting severe weather, tornadoes, and flash
floods across the watch-to-warning continuum. Although an experimental WoFS is now a reality, we close by discussing
many of the exciting opportunities remaining, including folding this system into the Unified Forecast System, transitioning
WoFS into NWS operations, and pursuing next-decade science goals for further advancing storm-scale prediction.

SIGNIFICANCE STATEMENT: The purpose of this research is to develop an experimental prediction system that fore-
casts the probability for severe weather hazards associated with individual thunderstorms up to 6 h in advance. This capabil-
ity is important because some people and organizations, like those living in mobile homes, caring for patients in hospitals, or
managing large outdoor events, require extended lead time to protect themselves and others from potential severe weather
hazards. Our results demonstrate a prediction system that enables forecasters, for the first time, to message probabilistic haz-
ard information associated with individual severe storms between the watch-to-warning time frame within the United States.

KEYWORDS: Forecast verification/skill; Numerical weather prediction/forecasting; Probability forecasts/models/distribution;
Short-range prediction; Data assimilation; Decision support

1. Introduction

The development of NWP-based probabilistic forecast guid-
ance enabling forecasters to communicate actionable high-

impact weather information to a broad range of end-users is
an ongoing scientific and societal challenge. A frequently up-
dating ensemble analysis and prediction system is crucial for
formulating and communicating this information, which in-
cludes the most likely path, intensity, and timing for hazards
like tornadoes, high winds, large hail, and flash floods, at
lead times from minutes to a few hours. Stensrud et al.
(2009) envisioned the development of such a forecast sys-
tem that, by 2020, would enable a transition from the cur-
rent “warn-on-detection” paradigm to a “warn-on-forecast”
paradigm within NWS operations. The motivation and soci-
etal need for the warn-on-forecast concept can also be
found in several National Research Council (NRC) reports
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(e.g., NRC 1999, 2003, 2006, 2012), and it fits within a
newly developing framework termed FACETs (Forecasting
a Continuum of Environmental Threats; Rothfusz et al.
2018), which aims to transition the delivery of severe
weather information in the United States from rigid, deter-
ministic products to a more continuously updating flow
of probabilistic hazard information (Trujillo-Falcón et al.
2022). Both warn-on-forecast and FACETs align with an
ongoing shift in the NWS toward less determinism, more
communication of probabilities, and a focus on the “last
mile” of warning communication to get specific forecasts to
decision makers at greater lead time (Uccellini and Ten
Hoeve 2019).

Providing probabilistic information at watch-to-warning
time scales (i.e., 0–6 h) also has the potential for significant
economic benefits. For example, analysis of a survey con-
ducted by Howard et al. (2021) of about 500 firms in Dallas–
Fort Worth, Texas, estimated annual cost avoidance of
$2.3–$7.6 billion (U.S. dollars) from using probabilistic in-
formation instead of deterministic warnings for weather
events affecting this area. These benefits are not surprising,
as single deterministic NWP forecasts have little chance of
consistent, accurate prediction of thunderstorms that evolve
rapidly and are highly sensitive to environmental and inter-
nal storm processes (e.g., Stensrud and Gao 2010). Hence,
both the social science and physical science point to the ne-
cessity of probabilistic prediction of storm-scale thunder-
storm hazards.

While these ideas are common in 2023, in 2009 NWP capabil-
ities were very limited for models that could depict individual
thunderstorms and their hazards, and operational forecasters
mainly relied on relatively coarse models that only depicted
large-scale storm environments. Stensrud et al. (2009) outlined
several scientific, technical, and sociological challenges to ad-
dress this forecast challenge. For example, high-resolution
initial conditions (ICs), from which accurate predictions of indi-
vidual storms can be made, are foundational for warn-on-
forecast. Generating these ICs was a scientific and technical
challenge that required research on data assimilation (DA)
methods, as well as the impacts of different observational
datasets (e.g., radar, satellite, surface observations, etc.) on
forecast quality. Another challenge involved how to most
accurately model storms. Stensrud et al. (2009) recognized
that multimoment schemes would be needed to reduce
model error and sensitivity related to microphysics, and
that developing efficient and accurate multimoment
schemes that can be used in real time would require re-
search and development. Finally, a key requirement for op-
erational systems is that forecasts are produced quickly
enough to be useful. Thus, efficiency is an integral compo-
nent of all the technical and scientific challenges. Other
technical hurdles included developing verification strategies
and finding what observational datasets are needed to ver-
ify predictions of individual storms. Sociological challenges
for warn-on-forecast included optimizing visualizations of
probabilistic information that would best assist forecasters
without overwhelming them, as well as learning about how

different end-users apply and interpret warn-on-forecast
guidance in different situations.

Since 2009, the NOAA NSSL and their partners have
worked together to transform Stensrud et al. (2009)’s vision
from basic research to reality. Namely, we created and main-
tain a frequently updating, high-resolution, storm-scale1 en-
semble analysis and prediction system to extend warning lead
time for severe weather and flash floods, which is named the
Warn-on-Forecast System (WoFS). Building WoFS required
innovation in several areas and, as of 2023, steady successes
have laid the groundwork for operational implementation in
the next few years. In this paper, we describe the scientific and
technical approaches employed within the 2023 WoFS, unique
postprocessing, visualization, and verification approaches, and
provide a summary of the user-focused research conducted
iteratively with forecasters, and other end users, to address the
technical and sociological challenges for system use.

2. WoFS ensemble data assimilation and
prediction system

a. WoFS evolution and development

When the warn-on-forecast program started at NSSL in
2009, the ARW-WRF (hereafter WRF; Skamarock et al.
2008) was chosen as the driving model for WoFS. At the time,
WRF was the state-of-the-art regional modeling system in
the United States. WRF was an ideal choice for WoFS
because: 1) the nonhydrostatic solver facilitates simulating
convective storms, 2) WRF was designed for community
modeling with many different options for physical parameter-
izations, 3) through National Science Foundation funding, the
NCAR provided comprehensive model support, 4) adaptable
regional domains were easy to configure, and 5) many NSSL
scientists were already using WRF for convective storms re-
search. Furthermore, WRF was used for the HRRR (Benjamin
et al. 2016; Dowell et al. 2022), which was in development at
NOAA’s Global Systems Laboratory (GSL) and became oper-
ational in 2014. Matching the HRRR model core enabled close
collaboration with GSL, a core partner of NSSL, and we envi-
sioned that WoFS initial and lateral boundaries would eventu-
ally come from the HRRR. With NOAA’s transition to the
Unified Forecast System (UFS; https://ufscommunity.org) and
NCAR ending their support of the WRF Model, future ver-
sions of WoFS will use a different dynamic core.

Initial versions of the WoFS DA system used NCAR’s
Data Assimilation Research Testbed software (DART;
Anderson 2008). Ensemble DA approach is essential for ef-
fective assimilation of radar observations owing to its ability
to include both flow dependence and multivariate cross cova-
riances in the background. DART was the first and only avail-
able community ensemble DA framework that was designed
to assimilate a wide variety of observations, including the ca-
pability to directly assimilate Doppler reflectivity and velocity

1
“Storm scale” will generally refer to the scale of individual

thunderstorms, consistent with the meso-gamma scale defined by
Orlanski (1975).
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data within high-resolution models via ensemble Kalman filter
(EnKF) algorithms. This capability likely accelerated WoFS
development by several years. EnKF is well suited for WoFS
because its ensemble approach results directly in perturbed
initial conditions, and research beginning in the mid- to late-
2000s found that it was very effective for assimilating radar re-
flectivity and radial velocity data (e.g., Zhang et al. 2004;
Tong and Xue 2005; Dowell et al. 2004; Gao and Xue 2008;
Aksoy et al. 2009, 2010; Potvin and Wicker 2013). In 2016,
NSSL began assimilating radar reflectivity from its Multi-Radar,
Multi-Sensor system (MRMS; Smith et al. 2016), which was im-
portant due to its quality control and low latency. WoFS also as-
similates radial velocity information, after thinning, from the
raw Level-II radial velocity files (Dowell et al. 2011; Yussouf
et al. 2013, 2015, 2016; Jones et al. 2013a, 2014, 2015, 2016;
Wheatley et al. 2015). Controlled experiments, with and without
radar DA, show that frequent radar DA (5–15-min cycles) is
critical for short-term storm prediction (e.g., Jones et al. 2013a,
2014, 2015; Yussouf et al. 2016). Furthermore, Guerra et al.
(2022) used a storm tracking algorithm to show that when ob-
served storms depicted by WoFS have been through just 1 h of
DA cycles, their probabilities of detection are on average about
80 percentage points higher than observed storms that initiated
after model initialization. This improved performance is due, in
large part, to the radar DA (e.g., Galarneau et al. 2022).

Additional major advancements in WoFS were made by
assimilating satellite data, like cloud water-path and water
vapor radiances (Jones et al. 2018a). When assimilated
with radar data, satellite data provide additional forecast im-
provements for cloud properties, convective initiation, and

the near-storm environment (Jones et al. 2013a,b, 2014, 2015,
2016). The launch of GOES-16 in 2017 andGOES-17 in 2018,
provided satellite data with higher spatiotemporal resolution
than previously available. The assimilation of these higher-
resolution satellite observations results in further forecast im-
provements (Jones et al. 2020). For example, Fig. 1 shows 3-h
probability swaths of updraft helicity (UH) . 60 m2 s22

(a proxy for storm rotation; Kain et al. 2010) associated with a
long-track, violent tornado that approached Kansas City sub-
urbs on 28 May 2019. The WoFS run using both radar and sat-
ellite DA (Fig. 1b) depicts much higher probabilities and
better matches the observed storm track compared to simula-
tions without satellite DA (Fig. 1a). Newer, derived satellite
products, such as atmospheric motion vectors (AMVs), lay-
ered precipitable water, and lightning flash counts from the
global lightning mapper, have also been tested in WoFS with
promising results (e.g., Mallick and Jones 2020; Pan et al. 2018,
2021; Wang et al. 2021; Zhao et al. 2021a,b; Hu et al. 2021a,b).
In the future, we expect to assimilate additional satellite prod-
ucts, such as fire radiative power and aerosol optical depth, as
applications of WoFS expand (Jones et al. 2022). In 2019,
when the EnKF capabilities available in DART were added to
NOAA’s operational the Community Gridpoint Statistical In-
terpolation (GSI; Wu et al. 2002; Hu et al. 2018)-based EnKF
(Whitaker et al. 2008; Zhu et al. 2013) DA system, the WoFS
DA system was updated from DART to GSI.

Another key research area early in WoFS development was
microphysics parameterizations. NSSL was well positioned
for testing and development in this area, as scientists therein
had developed the multimoment variable density NSSL

FIG. 1. Probability of 2–5-km AGL UH $ 60 m2 s22 valid at 2100–0000 UTC 28–29 May 2019 (shaded), and
probability matched mean (PMM) simulated composite reflectivity (contours) valid at 0000 UTC 29 May from
the 2100 UTC WoFS initializations using (a) radar DA only and (b) radar and satellite DA. Local storm reports
during this period are indicated by red inverted triangles for tornadoes and green circles for hail. Tornado warn-
ings (red polygons) and severe thunderstorm warnings (blue polygons) that included 0000 UTC 29 May are also
shown.
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microphysics scheme (Mansell et al. 2010; Ziegler 1985;
Mansell et al. 2020). Many studies in the 2010s showed the ad-
vantages of multimoment over single-moment schemes in de-
picting a range of convective modes (e.g., Dawson et al. 2010,
2012; Yussouf et al. 2013; Putnam et al. 2014, 2017a,b; Igel
et al. 2015). The upgrade of the WSR-88D radar network to
dual polarization in 2013 meant that additional information
on particle size distributions, like differential reflectivity
(ZDR) and specific differential phase (KDP), could be incorpo-
rated in DA to reduce errors. Directly assimilating dual polar-
ization variables has limited utility without multimoment
schemes (e.g., Jung et al. 2012). The direct assimilation of real
ZDR data is demonstrated by Putnam et al. (2019) and Putnam
et al. (2021). Studies examining the importance of multimoment
schemes in reproducing observed dual polarization signatures in-
clude Dawson et al. (2014), Putnam et al. (2014, 2017a,b; Putnam
et al. 2019; Putnam et al. 2021), and Johnson et al. (2019). Also,
Labriola et al. (2019a,b) examined multimoment microphysics
schemes for explicit hail prediction. Because of its utility in accu-
rately depicting a range of convective modes at high resolution,
flexibility with up to three-moment capability, and community
availability within the WRF Model and NOAA’s Common
Community Physics Package (Zhang et al. 2022), the current
WoFS version uses NSSLmicrophysics.

b. 2023 WoFS configuration

The 2023 WoFS configuration is a 3-km grid spacing,
36-member ensemble with a regional domain (900 km3 900 km)

centered around the area of expected high-impact weather for
a particular day. Figure 2 depicts WoFS workflow. WoFS uses
continuous 15-min DA intervals, and assimilates data from
WSR-88D radars, GOES, and conventional observations (see
Table 1). High-resolution radar and satellite-derived observa-
tions are resampled to a 5-km grid prior to assimilation. While
the DA and cycling use all 36 members, forecasts are gener-
ated from the first 18 members and extend to 6- and 3-h lead
times for top-of-the-hour and bottom-of-the-hour initializa-
tions, respectively. WoFS also has an experimental companion
system known as WoF Hybrid 3DEnVAR (Gao and Stensrud
2014; Wang et al. 2019) that uses the hybrid ensemble–three
dimensional (3D) variational data assimilation technique. This
system incorporates the WoFS EnKF ensemble for flow-
dependent background error covariances. It runs in a one-way
coupling between the ensemble and the deterministic system
to generate a single deterministic analysis and forecast compo-
nent (not shown). Similar to WoFS, WoF Hybrid 3DEnVAR
assimilates WSR-88D radar (reflectivity and velocity) and
GOES-16 and GOES-17 satellite data (Table 1), and com-
pletes a DA cycle every 15 min (Wang et al. 2019; Pan et al.
2021). This approach is being looked into to develop a full 3D
atmospheric severe thunderstorm analysis system for severe
weather detection and NWPmodel verification.

Initial conditions (ICs) for WoFS are obtained from the
36-member HRRR-DAS (HRRR Data Assimilation System;
Dowell et al. 2022). Until 2021, lateral boundary conditions
(LBCs) for WoFS were generated from the first 9 members,

FIG. 2. Flowchart showing the workflow forWoFS. TheWoFS analysis system is continuously cycled every 15 min up to 12–15 h (depending
on the weather). The initial analysis, obtained using NCEP’s HRRR-DAS, starts at 1500 UTC and spins up using 2 h of cycling. Ensemble
forecasts are then launched every 30 min. (top left) An example domain from the south-central United States. (top right) The observations
used in the GSI EnKF analysis cycling.
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0–24-h experimental HRRR ensemble forecasts running on
NOAA’s Jet supercomputer at GSL (Dowell et al. 2016).
Those forecasts included stochastic approaches applied to the
HRRR physics suite (Jankov et al. 2019). This configuration
yielded a unique combination of IC/LBCs, boundary layer pa-
rameterization, and radiation scheme for each WoFS mem-
ber, and helped to maintain ensemble spread through the
cycling period (Wheatley et al. 2015; Stensrud et al. 2000). In
2022, the experimental HRRR ensemble forecast was no lon-
ger available, so a new strategy for generating the 36 LBCs
was needed. Instead, the operational HRRR forecast is com-
bined with large-scale perturbations from 18 members of the
GEFS (Zhou et al. 2022). Testing showed that this new
method worked as well as or better than the old method and
eliminates WoFS dependence on nonoperational systems.

During each DA cycle, WoFS uses the prior adaptive infla-
tion technique developed by Anderson (2009). Horizontal
and vertical localizations are applied using the Gaspari and
Cohn (1999) method and vary as a function of observation
type. The localizations are used to reduce the impact of spuri-
ous covariances due to sampling error from limited ensemble
size. Horizontal localization length is longest for conventional
observations (;500 km) and shortest for high-density radar
and satellite data (;20 km) (Jones et al. 2020). Additive noise
is applied to temperature, humidity, and wind variables where
reflectivity observations are greater than 35 dBZ and reflec-
tivity mean innovations are greater than 10 dBZ (Dowell
and Wicker 2009; Sobash and Wicker 2015). Finally, outlier
thresholds are applied to reduce the impact of potentially
nonrepresentative observations on the system.

c. Compute resources required

WoFS runs as an on-demand system and choices on grid
spacing, membership, forecast length, and domain size are
based on 1) minimum NWP requirements for the ensemble
analysis and forecasts, 2) forecaster needs, and 3) available
computing resources that could be dedicated to a continu-
ously cycling DA and forecast system that typically runs
9–12 h each day during active severe weather. On the Cray
XC30, a WoFS configuration requires about 2800 cores
(across 120 24-core nodes) dedicated to the analysis cycling,
ensemble forecasts, and postprocessing. For the analysis

cycling with GSI-EnKF, each of the 36 ensemble members
runs on a single node. The GSI-EnKF also runs within that
36-node partition. For the 18-memberWRF forecasts, 54 nodes
are dedicated (3 nodes for each member) to complete a 6-h
forecast within 30 wall-clock minutes. The remaining nodes are
used for the preprocessing of radar and satellite observations,
as well as the postprocessing of forecast output. Each ensemble
member outputs data at 5-min resolution through the 3- or 6-h
forecast period. The ensemble postprocessing accounts for
20% of the total compute costs, with over 20 000 images2 per
6-h forecast generated for the web interface. Each day gener-
ates approximately 5 TB of data that is stored locally. Because
of the large data volumes, WoFS has been utilized as a use case
for an EarthCube Research Networks project on determining
best practices for archiving and reproducibility of geoscience
model output (Mullendore et al. 2021; https://modeldatarcn.
github.io).

Since WoFS is designed to be an “on-demand” NWP sys-
tem, with the need to potentially run distinct simultaneous do-
mains for different threats in different locations, NSSL
decided to move WoFS to a computing platform that could
1) scale with the needs of users, 2) provide a complete user in-
terface to launch and control runs, and 3) provide visualization
of WoFS output, all within a unified software approach. In the
spring 2020, a software engineering project to port WoFS to
the Microsoft Azure cloud began within NSSL. By early 2022,
cloud-based (cb)-WoFS replaced the “Cray-based” WoFS for
all real-time computation and postprocessing; only the obser-
vational preprocessing remained local. In spring 2023, all of
WoFS’ pre- and postprocessing scripts, web-based visualiza-
tion code, the WRF model, and the DA software is cloud-
based. Cb-WoFS enabled seven dual-domain runs in 2023,
which included days with two simultaneous Moderate Risk
Outlooks issued by the SPC. Replacing the original shell

TABLE 1. Configuration comparison between the HRRR and WoFS ensemble.

Configuration HRRR (state-of-the-art single run) WoFS (first-of-its-kind ensemble)

WRF-based; RUC LSM; 36-member GSI-ENKF analysis;
3-km horizontal grid spacing; 50 vertical levels

Yes Yes

Designed as forecast ensemble No Yes
Radar reflectivity assimilated Yes Yes
Radar velocity assimilated No Yes
GOES clear-sky radiances assimilated No Yes
GOES CWP assimilated No Yes
Multiple PBL schemes (YSU, MYJ, MYNN) No Yes
Multiple radiation schemes (RRTMG, RRTM, Dudhia) No Yes
Microphysics Thompson aerosol aware NSSL double moment
Data assimilation cadence 60 min 15 min
Temporal resolution of output 15 min 5 min

2 For 6-h forecasts, 10 000 of these images are forecast soundings
covering a 20 3 20 grid with output available every 15 min. Be-
cause of the inordinate amount of resources required to generate
forecast sounding images, cb-WoFS generates them upon user re-
quest rather than pregenerating the full suite of images. This
change results in increased loading time for sounding images on
the web viewer but significantly mitigates the postprocessing com-
putational expense.
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scripts, the cb-WoFS workflow was developed into a software
stack that uses Azure SDK’s to execute cb-WoFS components
on Azure platform and infrastructure services. This software
controls the entire analysis, forecast, and pre and postprocess-
ing tasks without intervention over a period of 12–15 h.

3. Visualizations of WoFS guidance

Beyond computing and model development challenges, it is
crucial that WoFS output be rapidly disseminated to end users
with products and visualization strategies that do not prohibi-
tively increase forecasters’ cognitive workload (e.g., Wilson
et al. 2017, 2019b; Karstens et al. 2018; Demuth et al. 2020).
Compared to short- and medium-range ensemble guidance
products, the products for 0–6-h lead times produced by
WoFS differ significantly and have not been fully explored in
NWS operations. Because of the relatively small spatial scales
and limited intrinsic predictability of thunderstorms (e.g.,
Potvin et al. 2017; Flora et al. 2018), storm locations in ensem-
ble members drift apart with increasing forecast lead time.
Thus, the appearance of a storm in the ensemble-mean simu-
lated reflectivity field often becomes increasingly broad,
smooth, and less intense with lead time due to spread in storm
placement, giving the misleading impression that the storm is
weakening. Therefore, storm-based WoFS guidance products
have been designed to preserve information on the location,
timing, motion, likelihood, and severity of discrete features
(Skinner et al. 2023). WoFS probabilistic guidance products
can be classified using three general categories: 1) probability
of exceedance, 2) ensemble percentile, and 3) “paintball”
products. These are produced for several different severe
weather proxies, and examples from a forecast on 7 May 2020
are provided in Fig. 3.

a. Probability of exceedance

Probability of exceedance products are created by calculat-
ing the percentage of ensemble members that exceed a pre-
scribed threshold within 4.5-, 7.5-, and 13.5-km radii of each
grid point (e.g., Schwartz and Sobash 2017; Roberts et al.
2019). Using different radii helps account for spatial uncer-
tainty and provides information on the likelihood of an event
at different spatial scales. To illustrate, Fig. 3 shows probabili-
ties of UH $ 60 m2 s22 within each radius, which reveals a
trade-off between spatial precision and accounting for spatial
uncertainty. In this case, most WoFS members predict meso-
cyclone development across the northeastern Texas Panhan-
dle; however, only a few members overlap precisely, resulting
in low probabilities using the 4.5-km radius (Fig. 3a). In con-
trast, WoFS members have high overlap (i.e., high confi-
dence) for the track of a mesocyclone through northwest
Texas using the same 4.5-km neighborhood. If a larger,
13.5-km radius neighborhood is used (Fig. 3c), it spreads out
the information from the members. In this case, storms in the
northeastern Texas Panhandle have increased overlap, result-
ing in a more confident and representative forecast given that
most members predicted storms in that area. The larger
neighborhood also spreads information in the more confi-
dently predicted mesocyclone track in western northern

Texas, resulting in a loss of precision and an overly broad pre-
diction of the track. Therefore, an appropriate neighborhood
for viewing ensemble probabilities of exceedance will be
highly case dependent and vary with user needs and changes
in ensemble spread. WoFS also computes probability of ex-
ceedance products for rainfall, severe hail and winds, and
lightning flash extent density.

b. Percentiles

Complementing exceedance probabilities, ensemble per-
centiles are the value exceeded by a specified percentage of
the ensemble members (Fig. 3d). For example, the 50th per-
centile is the ensemble median while the ensemble maximum
is the largest value the ensemble predicts at each grid box.
The percentile products are useful for quantifying potential
severity (e.g., Novak et al. 2014; Demuth et al. 2020). The en-
semble maximum, which is the most familiar percentile prod-
uct, is often used to provide a worst-case scenario, as well as
predict the region where an event is possible since it contains
information from all members (Fig. 3e). Including informa-
tion from every ensemble member, however, can overly em-
phasize unlikely events predicted by a single member and
provide misleading guidance on event coverage. Therefore,
the ensemble 90th percentile value is often used to provide a
“reasonable” worst-case scenario (Fig. 3d).

c. Paintballs

Despite the utility of exceedance probabilities and percen-
tiles, they do not provide member-specific information on
thunderstorm characteristics like size, motion, and evolution,
which forecasters often use to make short-term thunderstorm
forecasts. Owing to time constraints, it is often not feasible to
examine deterministic forecasts from each ensemble member
in operations. To provide an ensemble guidance product com-
parable to radar analysis, paintball guidance products are cre-
ated by plotting limited information from each ensemble
member on the same plot (Schwartz et al. 2015). These plots
are analogous to “spaghetti” plots often used in medium-
range forecasting (Sivillo et al. 1997), except applied to dis-
continuous fields. An example is provided in Fig. 3f where
simulated composite reflectivity $ 45 dBZ is shown with dif-
ferent colors assigned to each member. When these plots are
animated, they can quickly provide useful information on
storm timing, coverage, motion, and likelihood (based on how
many paintballs overlap in space). The size and shape of the
paintballs informs users on likely storm modes (e.g., linear
versus cellular), and paintball motion can reveal instances of
deviant motion associated with left- and right-moving super-
cells (Rotunno and Klemp 1982). The breadth of information
and ease of interpretability provided by paintball plots have
made them the most popular WoF guidance product during
past real-time experiments (Wilson et al. 2021).

Each of the guidance products described above is produced
as a single image for a given lead time. WoFS currently uses a
web interface to serve experimental real-time guidance to end
users (https://cbwofs.nssl.noaa.gov/forecast), and the interface
enables users to rapidly cycle through or animate guidance
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FIG. 3. Examples of WoFS 3-h probabilistic guidance products for the 2330 UTC 7 May 2020 forecast, valid at 0230 UTC 8 May. (top)
The neighborhood maximum ensemble probability of 2–5-km UH $ 60 m2 s22 for (a) 4.5-, (b) 7.5-, and (c) 13.5-km neighborhood radii
accumulated over the 3-h forecast. (bottom) The (d) ensemble 90th percentile and (e) ensemble maximum values of 2–5-km UH (m2 s22)
accumulated over the 3-h forecast and (f) simulated composite reflectivity paintballs exceeding 45 dBZ valid at 0230 UTC 8 May. A clus-
ter of storms in northwest Texas and a supercell track through north Texas discussed in the text are annotated in (a).
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products for each available lead time. Additionally, the web
interface allows for implementation of interactive features,
such as toggled overlays of geographical information and cur-
rent real-world observations, and the ability to combine prob-
abilistic and deterministic WoFS output. Several of these
interactive features are unique compared to other model
viewers.

A complication of rapidly cycled radar and satellite DA is
that the quality of WoFS initial conditions will be correlated
with the number of observations assimilated for each storm in
the domain (e.g., Yussouf and Stensrud 2010; Stratman et al.
2020), resulting in varying accuracy of ensemble analyses and
forecasts for different storms (Guerra et al. 2022). To deter-
mine how much confidence to have in WoFS guidance, users
need an efficient means of assessing which storms are accu-
rately analyzed in WoFS initial conditions, and which are not.
Overlays of real-time radar and rainfall observations with
WoFS guidance help to fill this need by enabling users to rap-
idly compare differences between the simulated and observed
storms. Additionally, NWS forecasters have expressed a need
for a combination of deterministic and probabilistic guidance
to effectively utilize ensemble forecasts (Demuth et al. 2020).
The WoFS viewer provides capabilities to overlay determinis-
tic forecasts, such as UH swaths from individual members or
WoF Hybrid, with any probabilistic product. This combina-
tion of probabilistic and deterministic guidance allows users
to interrogate multiple aspects of forecast likelihood, severity,
and evolution using a single animation. Beginning in 2022,
select real-time WoFS probabilistic guidance products were
demonstrated within AWIPS2 (Advanced Weather Interac-
tive Processing System), providing access to WoFS in a fully
interactive and integrated suite of operational observations,
analyses, model outputs, and forecast tools.

d. Explicit severe weather probabilities through
machine learning

Despite WoFS’s usefulness for severe weather forecasting,
grid spacing, and physical parameterization constraints limit
explicit hazard guidance. Machine learning (ML) methods
can enhance WoFS by using multiple predictors to establish
multivariate relationships for skillful, calibrated probabilistic
guidance. ML models have recently been implemented to cali-
brate WoFS 0–3-h object-based, probabilistic guidance for se-
vere wind, severe hail, and tornadoes (Flora et al. 2021; known
as WoFS-ML-Severe). WoFS-ML-Severe has run since spring
2021 and was included in a 2022 Hazardous Weather Testbed
Spring Forecasting Experiment (HWT-SFE) forecasting activ-
ity. In this study, participants with access to the ML guidance
produced better severe weather outlooks than those without
(Clark et al. 2023).

4. Verification approaches for WoFS guidance

As with any modeling system, thorough forecast verifica-
tion of WoFS is critical for quantifying skill, identifying areas
for improvement, and monitoring progress as improvements
are implemented. A big challenge for WoFS is that the severe
weather hazards WoFS aims to predict are not observed well.

The primary severe weather database for the United States,
Storm Data, which is maintained by NOAA’s National
Centers for Environmental Information (NCEI) and SPC
(http://www.ncdc.noaa.gov/stormevents/), has significant limi-
tations, biases, and nonmeteorological influences unique to
each hazard (e.g., Brooks et al. 2003; Trapp et al. 2006; Potvin
et al. 2019, 2022). Despite these limitations, local storm re-
ports (LSRs) in Storm Data are the most commonly used veri-
fication dataset for severe thunderstorm NWP (e.g., Sobash
et al. 2011, 2016; Schwartz and Sobash 2017; Roberts et al.
2019). While remotely sensed observations can address issues
with LSRs, such as undersampling and population biases, they
have other limitations including limited representation (e.g.,
Doppler radars only measure one wind component) and vary-
ing data quality with geography (e.g., radar beam blockage).
Another verification challenge is that WoFS does not explic-
itly predict severe weather hazards (e.g., tornadoes, hail size,
and wind gusts). Thus, simulated severe hazard proxies that
are known to be related to observed hazards are often used.

Another challenge for WoFS verification is accounting for
“double penalties” that result when traditional, point-based
metrics penalize small displacement errors once for a miss
and again for a false alarm. In these situations, skill metrics
can indicate poor performance when the forecasts are subjec-
tively very skillful. Therefore, bulk verification of WoFS and
other convection-allowing ensembles is generally accom-
plished using the spatial verification methods (e.g., Gilleland
et al. 2009, 2010) described below.

a. Neighborhood verification

The neighborhood methods used to generate probabilistic
WoFS guidance may also be used to generate verification
fields for evaluating deterministic (e.g., Roberts and Lean
2008) and probabilistic (e.g., Sobash et al. 2011, 2016;
Schwartz and Sobash 2017) guidance. Neighborhood verifica-
tion has typically been applied to WoFS forecasts of heavy
rainfall and severe thunderstorm hazards, and used to quan-
tify differences in skill between WoFS and other forecast
systems. For example, Lawson et al. (2018) quantified im-
provements in WoFS skill for 0–3-h deterministic forecasts of
heavy rainfall over corresponding forecasts from two configu-
rations of the HRRR model. The WoFS research team also
found that WoFS could accurately predict the location and
timing of heavy rainfall (Yussouf et al. 2016; Yussouf and
Knopfmeier 2019) or tropical cyclone hazards (damaging
winds, heavy rainfall, or tornadoes) with up to 6 h of lead
time (Yussouf et al. 2020a).

Similarly, neighborhood verification has quantified im-
provements in probabilistic simulated reflectivity forecasts
from WoFS relative to the HRRR Time-Lagged Ensemble
(Roberts et al. 2020), and been used to evaluate probabilistic
severe thunderstorm outlooks issued by participants in the
Hazardous Weather Testbed (HWT) Spring Forecasting
Experiment (SFE) using WoFS guidance (Wilson et al. 2021;
Gallo et al. 2022). Finally, multiple neighborhood verification
metrics may be aggregated for varying forecast quantities,
lead times, and neighborhood sizes. Comparison of these
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metrics between different forecast systems may be accom-
plished using a “scorecard” visualization that provides at-
a-glance information about the strengths and weaknesses of
different systems (Gallo et al. 2019). Scorecards of WoFS sim-
ulated reflectivity guidance can be produced relative to other
CAM ensembles following each WoFS run (Matilla et al.
2021), providing measures of the bulk forecast skill and day-
to-day variations in skill between systems. This scorecard is
generated using the Model Evaluation Tools suite of products
(METplus; http://dtcenter.org/community-code/metplus).

b. Object-based verification

A limitation of neighborhood verification is that it, by defi-
nition, spreads and smooths forecast data, which can obscure
forecasts of individual small-scale events like thunderstorms
(Flora et al. 2019). As a fundamental goal of WoFS is provid-
ing short-term predictions of hazards in individual thunder-
storms, some method for verifying WoFS guidance on a
storm-to-storm basis is needed. Object-based verification is a
natural fit for this requirement as it identifies discrete events
in forecast fields and matches them to observational proxies
(e.g., Davis et al. 2006a,b).

As an example, objects representing thunderstorms in
WoFS simulated reflectivity may be verified against corre-
sponding objects in reflectivity observations from the WSR-
88D network. Although in this example both the forecast
and verification dataset include the same field, it is not an ap-
ples-to-apples comparison. Complicating this comparison are
1) resolution differences between the two datasets and 2) vari-
ation between reflectivity simulated by a microphysical pa-
rameterization in a numerical model and observed by radar.
Therefore, objects are typically identified in the varying data-
sets using matched percentiles from the full distribution of
values across all cases being considered (e.g., Mittermaier and
Roberts 2010; Sobash et al. 2016) to help limit the impact of
bias between different proxies for a given phenomenon. Once
objects have been identified, they are matched according to
desired criteria for measuring forecast accuracy. For example,
composite reflectivity objects in WoFS are often matched to
corresponding objects in MRMS data if they occur within the
time and space scale of a typical NWS warning product
(Skinner et al. 2018).

Once object pairs have been matched, a count of objects con-
sidered “hits,” “misses,” and “false alarms” can be produced;
then verification metrics, derived from a 2 3 2 contingency ta-
ble, can be used to evaluate the forecast quality. For example,
Fig. 4 shows a performance diagram (Roebber 2009) of the
daily mean scores of 45–75-min WoFS reflectivity object fore-
casts for each SFE case from 2017 to 2020. For the majority of
cases, the mean probability of detection is higher than the false
alarm ratio during this period, indicating that most thunder-
storm objects in WoFS are predicted to be near the observed
location of storms. Beyond these traditional verification met-
rics, object-based verification can produce extensive diagnostic
information that can be used to characterize specific errors in
the forecast (Wolff et al. 2014), such as quantifying an increase
in accuracy for “older” storms relative to convection initiation,

where multiple cycles of radar and satellite assimilation result
in improved initial conditions and resulting forecasts (Fig. 4;
Guerra et al. 2022).

Object-based verification provided the first bulk analysis
for the skill of WoFS simulated reflectivity and UH forecasts,
which were used as a proxy for thunderstorms and mesocy-
clones, respectively. Skinner et al. (2018) found that WoFS
could skillfully predict both phenomena out to lead times of
3 h. This study was extended to probabilistic guidance for meso-
cyclones by Flora et al. (2019), who found that WoFS could pro-
duce reliable probabilities of mesocyclone occurrence in an
object-based framework. Additionally, object-based verification
has been used to establish skill for predicting specific events
(Skinner et al. 2016; Yussouf et al. 2016; Pan and Gao 2022),
quantify forecast improvements resulting from configuration
changes (Jones et al. 2018a, 2020; Stratman et al. 2020; Kerr
et al. 2021; Lawson et al. 2021; Miller et al. 2022), verify WoFS
forecasts of upper-level clouds (Jones et al. 2018b) or tropical
cyclone hazards (Jones et al. 2019), and create composite storm
objects used to evaluate the accuracy of WoFS predictions of
the near-storm environment (Britt et al. 2020; Laser et al. 2022;
Potvin et al. 2020). While verification of WoFS forecast skill is
critical to understanding the system’s performance, as important
is forecasters’ evaluations of the usability and usefulness of
WoFS 0–6-h forecast guidance in operations.

FIG. 4. Performance diagram (Roebber 2009) showing the daily,
ensemble mean accuracy of WoFS 45–75-min forecasts of compos-
ite reflectivity objects across 87 SFE cases between 2017 and 2020.
Reflectivity objects are identified in WoFS and matched to MRMS
observations on spatial scales similar to a typical severe weather
warning (approximately 32-km maximum displacement between
objects) using a similar methodology to Skinner et al. (2018). Each
marker on the diagram is the ensemble mean value for all forecasts
and ensemble members for a given case, marker size is scaled by
the total number of objects for a case. Markers are shaded by the
median observed thunderstorm object age from convection initia-
tion at WoFS initialization. Cases with older median storm ages are
generally seen to result in more accurate forecasts owing to im-
proved storm-scale WoFS initial conditions produced through ra-
dar and satellite assimilation (Guerra et al. 2022).
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5. User-focused research to address
sociological challenges

Visualizations of WoFS guidance and incorporation of interdis-
ciplinary expertise enabled the user-focused research that is a cru-
cial and growing component of WoFS development. Since 2017,
we have applied two approaches for conducting collaborative re-
search between researchers and forecasters: 1) through HWT ex-
periments, including the 2017–23 SFEs (Wilson et al. 2019a,b;
Clark et al. 2021, 2022, 2023; Gallo et al. 2020; Burke et al. 2022;
Skinner et al. 2023), Hydrometeorology Testbed Flash Flood and
Intense Rainfall (HMT-FFaIR) experiment in 2018 (Weather
Prediction Center 2018) and 2018/19 Hydrometeorology Testbed
Multi-Radar Multi-Sensor Hydrology experiments (Yussouf et al.
2020b; Martinaitis et al. 2023), and 2) through experimental use in
NWS operations, including the Storm Prediction Center (SPC),
Weather Prediction Center (WPC) (Wilson et al. 2023), and
Weather Forecast Offices (WFOs) (Burke et al. 2022; Skinner
et al. 2023). HWT experiments test WoFS applications and usabil-
ity in a pseudo-operational environment, whereas operational use
tests the impact of WoFS guidance on decision making in the real
world. Both approaches provide user-feedback to developers that
enable the enhancement and addition of WoFS visualizations to
best meet their forecast information needs and identify forecast
challenges that need to be addressed. A summary of these out-
comes is found in Skinner et al. (2023). These approaches also
provide information on forecasters’ understanding of WoFS guid-
ance that informs training materials (e.g., Wilson et al. 2019a,b;
Burke et al. 2022). This paper will next focus on how WoFS has
been used in operations to provide messaging to the public and
core partners on the timing, location, and intensity of significant
weather hazards betweenWatch andWarning time scales.

a. First use for operational decision-making

The first official use of WoFS in operational decision mak-
ing occurred on 16 May 2017 during real-time severe weather

operations at the WFO Norman, OK. Therein, the joint inter-
rogation of WoFS probabilistic guidance by WoFS research-
ers and WFO forecasters led to the issuance of a Significant
Weather Advisory (Fig. 5). In this case, successive WoFS runs
consistently forecast a high probability of two intense mesocy-
clones developing and then moving into western Oklahoma,
which when coupled with the existing environment, suggested
a high probability for severe weather and tornadoes. Two
EF2 tornadoes occurred just south of the two swaths of note-
worthy 2–5-km UH values per the WoFS 90th percentile of
2–5-km UH forecast (Fig. 5), beginning 78 min after the initial
time of the ensemble forecast shown here. These included a
long-track tornado that caused an estimated $25 million in prop-
erty damage and killed one person in Elk City, Oklahoma
(NCEI 2021). The language in the Significant Weather Advisory
was unique, stating “Severe weather is likely with these storms
as they move into Oklahoma and there is a high probability that
tornado warnings will be issued.” This statement indicated
greater confidence and specificity than is traditionally achieved
during Watches, and stopped just short of the immediate call to
action that would be presented in eventual Tornado Warnings.
This “watch-to-warning gap” is an area of active research, and is
potentially the most relevant space for a 3-km WoFS to consis-
tently make a positive impact on severe weather communica-
tion. In this case, Elk City Emergency Manager Lonnie
Risenhoover reported, “Based on the information [Significant
Weather Advisory] from the National Weather Service, we were
able to activate outdoor warning sirens about 30 min ahead of the
tornado.”

b. Use by SPC and a WFO for a large hail event

Since 2018, WoFS has been available to SPC forecasters in
their native product generation environment, NCEP AWIPS
(NAWIPS). Display of WoFS guidance in NAWIPS allows
the graphical component of products, such as the convective

FIG. 5. First official use of WoFS in operations. (left) 90th percentile values of 2–5-km UH, valid 2200–0055 UTC
16 May 2017. Annotated are the paths of two EF2 and locations of two unrated, very short-lived tornadoes (EFUs) in
west-central Oklahoma. (right) Significant Weather Advisory issued by NormanWFO, valid 2215–2245 UTC 16May 2017.
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outlook or mesoscale discussion (MD), to be drawn while us-
ing WoFS guidance as an underlay. WoFS guidance has been
formally expressed to users by SPC as a part of forecast rea-
soning in Convective Outlooks and especially MDs, including
confident identification of specific corridors of imminent
severe weather potential and maximum hazard intensity. Of
particular use to SPC are high-impact, low-predictability
events well forecast by WoFS. An example of note is the use
of WoFS guidance for post and downstream-watch decisions
on 7 May 2020 (Fig. 6). Within the MD number 0549 issued at
2304 UTC 7 May 2020 (Fig. 6a), an SPC forecaster stated, “A
supercell near Childress has recently split with the left split
moving northeastward in southwest Oklahoma. This storm
split was well advertised by the NSSL Warn-on-Forecast sys-
tem (Fig. 6c) while most other short-term guidance including
the HRRR and HRRR-P suggest storm initiation should just be

getting started now. In addition, the WoFS suggests the stron-
gest updraft helicity may occur in the next 1 to 2 h (Fig. 6d).
Current observations and short-term mesoscale evolution of
the environment (strengthening LLJ and northward moisture
advection) also support this, indicating that hail even larger
than the 3.25 that has been reported so far, may be possible as
the supercell further intensifies.” During that evening, the
WFO Norman, Oklahoma, also used WoFS guidance to mes-
sage this supercell. At 2301 UTC, they issued a graphic fore-
cast communicating an increasing potential for large hail, golf
ball to baseball size, through 0100 UTC 8 May 2020. The ori-
entation of the forecast corridor from Altus, Oklahoma, to
Seymour, Texas, to west of Wichita Falls, Texas, indicated the
issuing forecaster’s trust in the predicted path of the right-
turning supercell (Fig. 6b). A comparison of the forecast
swath of WoFS 90th percentile 2–5-km UH values with

FIG. 6. (a) Mesoscale Convective Discussion issued by the Storm Prediction Center at 2304 UTC 7 May 2020, valid through 0000 UTC
8 May 2020. (b) Graphic issued by WFONorman, OK, at 2301 UTC 7 May 2020. (c) WoFS percentile values of maximum updraft (m s21),
initialized at 2100 UTC 7 May 2020 and valid through 2305 UTC 7 May 2020. Overlaid are the WoFS probability-matched mean composite
reflectivity contours (30 and 50 dBZ) at 2305 UTC. (d) WoFS percentile values of UH (m2 s22), initialized at 2200 UTC 7 May 2020 and
valid through 0100 UTC 8 May 2020. Overlaid are severe hail reports valid at 2200–0100 UTC, a severe thunderstorm warning valid at
0100 UTC (blue), andWoFS probability-matched mean composite reflectivity contours (30 and 50 dBZ) at 0100 UTC.
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recorded hail reports (NCEI 2021) shows close temporal and
spatial correspondence (Fig. 6d). Furthermore, the overlap of
the severe thunderstorm warning active at 0100 UTC with the
WoFS probability matched mean 30- and 50-dBZ contours at
the same time suggests potential utility of WoFS guidance for
warning applications.

c. Use by WPC and a WFO for a flash flood event

While collaborative interactions with SPC and WFO fore-
casters have explored the usefulness of WoFS to real-time se-
vere storms forecasting, collaborative interactions with WPC
and WFO forecasters have tested applications of WoFS to
flash flood forecasting. WoFS was run in real time during the
summer months of 2017–20, in regions with a heightened risk
of flash flooding per the WPC Excessive Rainfall Outlook
(Burke et al. 2023). During the summers of 2019 and 2020, a
longitudinal survey was issued after each event (N 5 85) to
query how WoFS impacted forecasters’ situational awareness,
confidence, workload, and product issuance decisions (Wilson
et al. 2023). Forecasters reported that while use of WoFS
guidance increased their workload in 55% of events, its use
also increased their forecast confidence in 75% of events.
Among WoFS guidance attributes, convective mode was
rated most highly, followed by the intensity, coverage, timing,
and then location of thunderstorms.

WoFS guidance has been formally expressed to users as a
part of forecast reasoning in Mesoscale Precipitation Discus-
sions issued by WPC, especially when contributing to confident
identification of storm mode and persistent high probabilities
of high rainfall rates over a specific area. One example is the
use of WoFS guidance for heavy rainfall and flash flooding de-
cisions on 4 May 2022 (Fig. 7). Within the Mesoscale Precipita-
tion Discussion 0161 issued at 0200 UTC 5 May 2022 (Fig. 7a),
a WPC forecaster stated, “The experimental 00Z WoFS showed
a series of training 40 dBZ paintballs across the midsection of
Oklahoma with the area seeing the longest residency time being
east of OKC.”

“Remarkably, the QPF 50th percentile of the 00Z WoFS be-
tween 00–06Z included a maximum of 8" east of OKC (Fig. 7d)
with the 90th percentile even higher (not shown). It also identified
a. 60% chance for WoFS ensemble probabilities of rainfall rates
.2"/hr east of OKC this evening between 02–05Z) (Fig. 7c).”
WFO Tulsa, Oklahoma, also used WoFS guidance during this
event. Roughly coincident with the issuance of their first flash
flood warning, at 0101 UTC 5 May 2022, a forecaster at WFO
Tulsa noted in NWSChat, “NSSL Warn on Forecast data has
high probabilities of exceeding 5 inches of rain in much of Okfus-
kee and Okmulgee Co.s (Fig. 7b)… this area has seen heavy rain
over the last 3 days… serious flash flooding is likely as a series of
storms move through this evening.” During this event, the

FIG. 7. (a) Mesoscale Precipitation Discussion image issued by the Weather Prediction Center at 0200 UTC 5 May 2022, valid through
0730 UTC 5 May 2020. (b) WoFS ensemble probability of accumulated rainfall . 5 in., initialized at 0000 UTC 5 May 2022 and valid
through 0400 UTC 5 May 2022. (c) WoFS hourly probability of accumulated rainfall. 2 in., initialized at 0000 UTC 5 May 2022 and valid
at 0400 UTC. (d) WoFS 50th percentile values of accumulated precipitation (in.), initialized at 0000 UTC 5 May 2022 and valid through
0600 UTC 5 May 2022. (e) The 6-h accumulated Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimate, valid at
0600 UTC 5 May 2022. Overlaid are flash flood warnings valid during the forecast period (blue).
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availability of a mesoanalyst enabled ongoing monitoring, verifi-
cation, and communication of WoFS frequently updating prob-
abilistic forecast information to the warning forecaster.
Postevent feedback from WFO Tulsa to NSSL reported that, in
addition to HRRR forecasts, the WoFS increasing probabilities
of 2-, 3-, and 5-in. accumulations and the 50th percentile values
were used as guidance during the flash flood warning decision
process. A comparison of the WoFS 6-h forecast 50th percen-
tiles of accumulated rainfall valid at 0600 UTC (Fig. 7d), with
the accumulated MRMS quantitative precipitation estimate
valid at 0600 UTC (Fig. 7e), shows spatial correspondence with
the extreme rainfall amounts and flash flood warnings issued
over a narrow swath within northeast Oklahoma.

d. Realization of warn-on-forecast vision

In 2009, the capability to produce ensemble forecasts of in-
dividual thunderstorms and their hazards in real time was a vi-
sion illustrated within Stensrud et al. (2009). As shown in Fig.
8, Stensrud et al. (2009) envisioned a forecast system that, at
storm initiation, could predict individual thunderstorms, like
supercells, and associated probability swaths for high-impact
weather, like tornadoes, up to an hour in advance. A primary
goal of NSSL’s warn-on-forecast project has been to conduct

the research and development to realize this vision. One exam-
ple of note is the WoFS prediction of the 13 June 2022 tornadic
supercell near Chicago, Illinois (Fig. 8). The WoFS ensemble
probability of 0–2-km UH (15-km neighborhood), a proxy for
tornado prediction, was predicted to peak at .90% in the
northwest suburbs of Chicago. Two EF0 tornadoes occurred
within the swath approximately 40–60 min after the forecast
was initialized. This event is one of many demonstrating the re-
alization of the warn-on-forecast vision.

6. Conclusions and future work

More than a decade of work has brought us to an era in
which a 3-km version of WoFS influences the lead-time, spe-
cificity, and uncertainty expression of hazard information on
the watch-to-warning scale. WoFS has demonstrated its po-
tential in achieving the original, idealized vision of a system
whose probabilistic swaths, when viewed alongside observa-
tions and traditional datasets, enable NWS meteorologists to
“warn-on-forecast.”

The capabilities arise from WoFS design: a frequently
updating, high-resolution, storm-scale ensemble prediction
system that can consistently provide accurate guidance of

FIG. 8. (top) Original schematic for the Warn-on-Forecast vision from Stensrud et al. (2009), (left) depicting a hypothetical ensemble
predicted swath of tornado probability (by proxy) based on assimilation of observations from a developing thunderstorm followed by
(right) the verifying radar image of a mature tornadic thunderstorm 60 min later overlain on the forecast swath. (bottom) Data from a
real-world case on 13 Jun 2022, depicting the ensemble probability of 0–2-km UH$ 20 m2 s22 (15-km neighborhood) over a 2.5-h period.
The likelihood of significant 0–2-km UH was predicted to peak at .90% in northwest suburbs of Chicago, and two EF0 tornadoes
occurred within the swath approximately 40–60 min after the forecast was initialized.

H E I N S E LMAN E T AL . 87JANUARY 2024

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/24 04:06 PM UTC



thunderstorm coverage, mode, and evolution over the course
of a severe weather event (Skinner et al. 2018; Flora et al.
2019; Miller et al. 2022; Guerra et al. 2022). In experimental
real-time runs, WoFS has shown that rapidly cycled (15 min)
assimilation of WSR-88D andGOES-16 andGOES-17 obser-
vations offer forecasters, for the first time, probabilistic NWP
guidance on the storm scale, depicting weather evolution at
5-min resolution. Real-time WoFS output (e.g., probabilities,
forecast timing, convective mode) adjusts through time with
much the same cadence experienced by NWS meteorolo-
gists}who also mentally assimilate these observations in their
workflow during severe weather operations. Development of
interactive visualizations unique to WoFS have been informed
by continual communication between researchers/developers
and operational forecasters, in the hopes of streamlining the
ability to browse NWP content that is relaunched every half
hour within cognitively demanding NWS watch-to-warning
operations (Wilson et al. 2021; Skinner et al. 2023; Wilson
et al. 2023).

Beyond its original mission of providing accurate, short-
term, probabilistic guidance of convective storm hazards,
WoFS has proven beneficial in unexpected ways. First, a fore-
caster in Kentucky documented a case in which the system ac-
curately predicted a swath of high probability of severe
surface winds (.50 kt; 1 kt ’ 0.51 m s21) driven by evapora-
tive cooling as forward-anvil precipitation descended into a
pocket of dry air ahead of thunderstorms in central Tennessee
(Burke et al. 2022). This forecast example and other traits of
WoFS guidance may prove applicable to aviation interests
(Avey et al. 2023). Second, WoF applications extend beyond
predicting continental convection. WoFS forecasts of landfal-
ling tropical cyclones have accurately predicted the location,
intensity and spatial distribution of intense rainfall and thun-
derstorm-scale low-level rotation (Jones et al. 2019; Yussouf
et al. 2020a). WoFS has also shown the potential for forecast-
ing landfalling tropical cyclone eyewall wind speeds along the
coast and after the eye is fully inland (Jones et al. 2019).
Third, WoFS is being extended to fire and air-quality appli-
cations through real-time experimental use in NWS and
state forestry operations (Lindley et al. 2023), and through
assimilating satellite-derived aerosol properties and fire de-
tections using technology developed for the operational
HRRR-smoke system (Jones et al. 2022). Fourth, the devel-
opment of cb-WoFS is enabling multiple, discrete WoFS do-
mains to run simultaneously when high-impact weather
threats are anticipated over different geographic regions of
the United States. Fifth, we continue to investigate potential
improvements to the WoFS ensemble through the assimilation
of additional boundary layer observations and the implemen-
tation of new reflectivity and dual-polarimetric forward opera-
tors developed for S-band WSR-88D radars (Zhang et al.
2021; Hu et al. 2023).

An active and promising avenue for improving WoFS
guidance is using machine learning (ML) to postprocess the
ensemble forecast output. ML algorithms are becoming increas-
ingly common in the severe weather prediction community,
ranging from nowcasting to next-day forecasting and beyond
(e.g., Mecikalski et al. 2015; Gagne et al. 2017; Lagerquist

et al. 2017, 2020; McGovern et al. 2017, 2019a,b, 2023; Burke
et al. 2020; Cintineo et al. 2020; Hill et al. 2020; Steinkruger et al.
2020; Sobash et al. 2020; Loken et al. 2020). As discussed above,
ML products currently present in the WoFS are providing util-
ity to operational forecasters. We are actively developing
ML-based approaches including grid-based probabilities for
severe weather hazards (Clark and Loken 2022) and predicting
the situational accuracy of WoFS forecasts (Potvin et al. 2023)
to help forecasters calibrate their confidence in WoFS guidance
per event, and thereby issue more accurate products. Finally, a
project is underway that aims to merge WoFS dynamical fore-
cast data with ProbSevere output using an ML algorithm
(Loken et al. 2022). ProbSevere operates in a storm-centric
framework producing hazard probabilities every two minutes
for individual storms using data from MRMS, satellites, and
RAP analyses (Cintineo et al. 2020). Since WoFS is initialized
every 30 min with latency around 20 min, incorporating the
more frequently updating ProbSevere information via ML
methods will be critical for using WoFS in warning operations
(i.e., 0–90-min lead times).

In the future, we envision WoFS technologies for subhourly
cycling DA being eventually applied in the forthcoming
Rapid Refresh Forecast System (RRFS; Carley et al. 2021),
a convection-allowing ensemble covering North America,
which is intended to replace current regional modeling
capabilities (e.g., RAP/HRRR, NAM, SREF, and HREF) as
part of NOAA’s Unified Forecast System (UFS; https://
ufscommunity.org/) initiative. As RRFS capabilities advance,
WoFS will advance in parallel to always provide enhanced
prediction capabilities over limited domains embedded within
RRFS. In fact, the WoFS team is already engaged in research
and development for next-generation WoFS capabilities,
which include potentially replacing the WRF dynamic core
with the Model for Prediction Across Scales (MPAS; Skamarock
et al. 2012, 2018), increased resolution (i.e., 1-km grid spac-
ing and below), and upgraded DA using the JEDI (Joint
Effort for Data assimilation Integration; Auligne 2021)
framework.
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